均方误(mean square error)
参数估计术语。参数\(\theta\)的估计量\(\hat{\theta}\)的离差平方的期望值,即\(MSE(\hat{\theta})=E(\hat{\theta}-\theta)^2\)。均方误有如下表达式:\(MSE(\hat{\theta})=E[(\hat{\theta}-E(\hat{\theta})]^2+[\theta-E(\hat{\theta})]^2=V(\hat{\theta})+[\theta-E(\hat{\theta})]^2\),即估计量\(\hat{\theta}\)的均方误等于它的方差加上平方偏差(估计量的均值到 的误差的平方)。若\(\hat{\theta}\)是\(\theta\)的无偏估计,则\(\hat{\theta}\)的均方误等于它的方差。均方误是比较两个估计量的一个重要准则。若参数\(\theta\)有两个估计量\(\hat{\theta_1}\)与\(\hat{\theta_2}\),它们的均方误是\(MSE(\hat{\theta_1})\)与\(MSE(\hat{\theta_2})\),则\(\hat{\theta_1}\)与\(\hat{\theta_2}\)的相对效率定义为\(MSE(\hat{\theta_1})/MSE(\hat{\theta_2})\)。若相对效率小于1,则表明\(\hat{\theta_1}\)是比\(\hat{\theta_2}\)更有效的估计量。
没有要显示的评论
没有要显示的评论